Regulation of base excision repair: Ntg1 nuclear and mitochondrial dynamic localization in response to genotoxic stress

نویسندگان

  • Dan B. Swartzlander
  • Lyra M. Griffiths
  • Joan Lee
  • Natalya P. Degtyareva
  • Paul W. Doetsch
  • Anita H. Corbett
چکیده

Numerous human pathologies result from unrepaired oxidative DNA damage. Base excision repair (BER) is responsible for the repair of oxidative DNA damage that occurs in both nuclei and mitochondria. Despite the importance of BER in maintaining genomic stability, knowledge concerning the regulation of this evolutionarily conserved repair pathway is almost nonexistent. The Saccharomyces cerevisiae BER protein, Ntg1, relocalizes to organelles containing elevated oxidative DNA damage, indicating a novel mechanism of regulation for BER. We propose that dynamic localization of BER proteins is modulated by constituents of stress response pathways. In an effort to mechanistically define these regulatory components, the elements necessary for nuclear and mitochondrial localization of Ntg1 were identified, including a bipartite classical nuclear localization signal, a mitochondrial matrix targeting sequence and the classical nuclear protein import machinery. Our results define a major regulatory system for BER which when compromised, confers a mutator phenotype and sensitizes cells to the cytotoxic effects of DNA damage.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mitochondrial dysfunction due to oxidative mitochondrial DNA damage is reduced through cooperative actions of diverse proteins.

The mitochondrial genome is a significant target of exogenous and endogenous genotoxic agents; however, the determinants that govern this susceptibility and the pathways available to resist mitochondrial DNA (mtDNA) damage are not well characterized. Here we report that oxidative mtDNA damage is elevated in strains lacking Ntg1p, providing the first direct functional evidence that this mitochon...

متن کامل

Dynamic Regulation of APE1/Ref-1 as a Therapeutic Target Protein

Apurinic/apyrimidinic endonuclease 1/redox factor-1 (APE1/Ref-1) is a multifunctional protein that plays a central role in the cellular response to DNA damage and redox regulation against oxidative stress. APE1/Ref-1 functions in the DNA base excision repair pathway, the redox regulation of several transcription factors, and the control of intracellular redox status through the inhibition of re...

متن کامل

Opposing roles of mitochondrial and nuclear PARP1 in the regulation of mitochondrial and nuclear DNA integrity: implications for the regulation of mitochondrial function

The positive role of PARP1 in regulation of various nuclear DNA transactions is well established. Although a mitochondrial localization of PARP1 has been suggested, its role in the maintenance of the mitochondrial DNA is currently unknown. Here we investigated the role of PARP1 in the repair of the mitochondrial DNA in the baseline and oxidative stress conditions. We used wild-type A549 cells o...

متن کامل

Dysregulated Expression and Sub cellular Localization of Base Excision Repair (BER) Pathway Enzymes in Gallbladder Cancer

Base excision repair (BER) pathway is one of the repair systems that have an impact on the radiotherapy and chemotherapy for the cancer patients. The molecular pathogenesis of gallbladder cancer is not known extensively. In the present study we investigated whether the expression of AP endonuclease 1 (APE1) and DNA polymerase β (DNA pol β), key enzymes of BER pathway has any clinical ...

متن کامل

Reactive oxygen species regulate DNA copy number in isolated yeast mitochondria by triggering recombination-mediated replication

Mitochondrial DNA (mtDNA) encodes proteins that are essential for cellular ATP production. Reactive oxygen species (ROS) are respiratory byproducts that damage mtDNA and other cellular components. In Saccharomyces cerevisiae, the oxidized base excision-repair enzyme Ntg1 introduces a double-stranded break (DSB) at the mtDNA replication origin ori5; this DSB initiates the rolling-circle mtDNA re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 38  شماره 

صفحات  -

تاریخ انتشار 2010